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Tandem radical-electrophilic annulations to pyrrole
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Abstract—Annulations to pyrrole arising from atom-transfer radical substitution, followed by electrophilic cyclization have been
developed. These annulations provide for novel entries into the azabicyclo-[3.3.0] and azabicyclo-[3.4.0] ring systems.
� 2004 Elsevier Ltd. All rights reserved.
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In several previous publications we described novel syn-
thetic methodology whereby radical aromatic substitu-
tion could be accomplished by a process involving
iodine-transfer radical addition to heteroaromatics,
accompanied by spontaneous rearomatization through
loss of HI.1 This methodology appears to be particularly
useful for the synthesis of 2-substituted pyrroles with
high regioselectivity. We had envisioned that radical
methodology of this type might serve as the basis for
annulations to pyrrole, creating bicyclic structures.
More specifically, we had hoped to generate bicyclic
structures through a tandem process involving intermo-
lecular radical aromatic substitution, followed by ring
closure arising from the nucleophilicity of the pyrrole
nitrogen reacting with a pendant electrophilic function-
ality. We were particularly interested in reactions lead-
ing to the formation of azabicyclo-[3.3.0] and
azabicyclo-[3.4.0] ring systems given their ubiquity in
pyrrolizidine and indolizidine alkaloids, respectively.
Previous radical-based attempts to synthesize these ring
systems from pyrrole have started with an N-substituted
pyrrole, with subsequent radical cyclization. Processes
of this type involving the cyclization of nucleophilic
alkyl or acyl radicals onto a pyrrole derivatized with
an electron-withdrawing group are well precedented.2

Similar cyclizations involving electrophilic radicals have
also been observed,3 as demonstrated in Muchowski�s
synthesis of the anti-inflammatory drug Ketorolac.3b

With the aforementioned goals in mind, we set out to
synthesize iodoglutarate and iodomalate diesters. Based
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on previous results in our laboratory,1 as well as oth-
ers�,4 we knew that the ester functionality adjacent to
the halogenated carbon should render the formed radi-
cal suitably electrophilic for addition to the electron-rich
heteroarene, pyrrole, while the second ester should sup-
ply an electrophilic carbon for subsequent ring closure.
Following literature procedures,5 conversion of the
commercially available monomethyl glutarate to its acid
chloride with SOCl2, followed by a Hell–Vollhard–
Zelinsky reaction with Br2, and esterification with
refluxing CH3OH yielded bromoester 1a, shown in
Figure 1. Conversion to a-iodoester 1b was readily
accomplished upon treatment of 1a with NaI/acetone
and catalytic Bu4N

+I�. The synthesis of homologous
bromide 2a has been previously accomplished by treat-
ment of diethyl DD,LL-malate with CBr4 and PPh3.

6 We
subsequently found that the same conversion can be
carried out more conveniently and reproducibly using
PBr3 as the brominating agent in THF. Bromide 2a
was converted to iodide 2b with a procedure identical
to that used to synthesize 1b.

With the above a-haloesters in hand, we attempted their
addition to pyrrole following our previously established
photolytic conditions. Curran et al.7 has shown that a
substoichiometric quantity of Bu3SnSnBu3 is required
in I-transfer radical addition reactions in order to
MeO2C CO2Me

1a X = Br
1b X = I

EtO2C CO2Et

2a X = Br
2b X = I

Figure 1.
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consume I2, a radical chain suppressant, which is gener-
ated as a byproduct of these reactions. In the course of
our previous work,1 we found that the addition of
Na2S2O3 as an I2 reductant in the presence of the
phase-transfer catalyst Bu4N

+I� to aid in thiosulfate sol-
ubility provided an effective alternative to the use of
distannanes. We also found that propylene oxide served
as an effective HI trap. The need to use a 15-fold excess
of pyrrole in order to obtain synthetically useful yields
of monosubstitution products is a drawback to this pro-
cedure, however.1,4

Bromoester 1a underwent the desired radical reaction
quite sluggishly, and in poor yield. While bromomalo-
nates have been shown to undergo atom-transfer addi-
tions to pyrrole quite readily,1 bromo precursors to
monocarbonyl-stabilized radicals are apparently not
sufficiently reactive to undergo reactions of this type in
synthetically useful yields. This was probably due to
the diminished rate with which atom transfer occurs
with alkyl bromides relative to the more reactive iodides.
The rate of halogen transfer to alkyl radicals by ethyl
iodoacetate has been reported to occur about 103 faster
than ethyl bromoacetate.8 Radical aromatic substitution
from iodoester 1b proceeded smoothly, but isolation of
the product was complicated by the presence of 1-
iodo-2-propanol, the byproduct of HI trapping with
propylene oxide.1 The 1-iodo-2-propanol proved very
difficult to remove from the crude product mixture, as
it seemed to have nearly identical chromatographic
mobility and a comparable boiling point to the desired
pyrrole product 3. This difficulty was effectively solved
by substituting the less polar epoxide epoxydecane for
propylene oxide. The iodoalcohol generated upon the
reaction of epoxydecane with HI proved far less polar
than the desired pyrrole, facilitating the chromato-
graphic isolation of pyrrole 3 in 78% yield9 (Eq. 1).
The process also proceeded smoothly for the reaction
of 2b with pyrrole, generating 4 in 69% yield9 (Eq. 2).
The modest diminution in yield was probably due to
HI elimination from the limiting reagent 2b, resulting
in small quantities of diethyl maleate and fumarate,
identified in the crude reaction mixture by GC/MS.

ð1Þ

ð2Þ

Cyclization of diester 3 was accomplished upon treat-
ment with K2CO3 in refluxing DMF, generating a 60%
yield of the desired bicyclic pyrrole 510 (Eq. 1). Cycliza-
tion of diester 4 proved far more difficult than expected.
At first, none of a large variety of reasonable cyclization
strategies, involving a wide variety of bases and solvents,
seemed to generate any of the desired lactam 6. In order
to shed some light on this problem, we calculated the
reaction enthalpies for both the successful cyclization
of 3–5, as well as the heretofore unsuccessful cyclization
of 4–6. Calculations were carried out at the AM1 semi-
empirical level using Spartan software, and predicted a
DHrxn of +4.4kcal/mol for formation of 6, and a DHrxn

of +0.1kcal/mol for formation of 5. While the precision
of values obtained at this low level of theory are clearly
suspect, they do support the conclusion that both cycli-
zations are nearly thermoneutral, with the formation of
lactam 6 slightly more endothermic, probably due to
enhanced ring strain. With this information in mind,
we reasoned that if we distilled off the EtOH byproduct
as it was generated, we might obtain lactam 6. After
attempting a variety of milder methods including
removal of EtOH by azeotropic distillation, we found
that we were only able to generate 6 in 43% yield upon
treatment of 4 with K2CO3 in toluene, followed by
distillation of the reaction mixture to dryness11 (Eq.
2). Once formed, however, lactam 6 proved reasonably
robust, and required no special handling.

Given the difficulties in cyclization of 4, we envisioned
that the azabicyclo-[3.3.0] ring systemmight be more eas-
ily obtained by cyclization of 7 to form 8, owing to pre-
sumed diminished ring strain in 8 relative to 6. Addition
of ethyl 2,4-diiodobutyrate (9),12 generated from the
analogous dibromide13 proceeded smoothly under our
usual conditions for radical aromatic substitution to
form 7 in 74% yield. Somewhat remarkably, the primary
iodide functionality proved quite unreactive to the reac-
tion conditions. Attempted cyclization under a wide vari-
ety of basic and neutral conditions failed to generate
isolable quantities of 8, instead generating cyclopropane
10, presumably arising from the ester enolate. Treatment
of iodide 7 with NEt3 in refluxing EtOH proved optimal
for the synthesis of cyclopropane 10 in 81% yield.14 Prob-
lematic cyclopropane formation has also been observed
with structurally similar 2-acylpyrroles.15

ð3Þ
In conclusion, we have shown that our previously estab-
lished methodology for radical aromatic substitution to
pyrrole is effective with a wider variety of highly func-
tionalized alkyl iodides. The substitution products, once
formed, are capable of undergoing intramolecular
lact-amization to form novel examples of the bicylic
compounds bearing the azabicyclo-[3.3.0] and azabicy-
clo-[3.4.0] ring systems. We believe these examples to
be the first case in which annulations to pyrrole have
been performed via radical substitution followed by
intramolecular electrophilic attack. The bicyclic pyrrole
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derivatives are also of interest, given that they illustrate
novel derivatives of pyrroleacetic acids, a class of com-
pounds noted for their anti-inflammatory and analgesic
activity.3b,16
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